新书推介:《语义网技术体系》
作者:瞿裕忠,胡伟,程龚
   XML论坛     W3CHINA.ORG讨论区     计算机科学论坛     SOAChina论坛     Blog     开放翻译计划     新浪微博  
 
  • 首页
  • 登录
  • 注册
  • 软件下载
  • 资料下载
  • 核心成员
  • 帮助
  •   Add to Google

    >> 操作系统研究。UEFI
    [返回] 中文XML论坛 - 专业的XML技术讨论区计算机理论与工程『 操作系统原理 』 → [转载]windows进程中的内存结构 查看新帖用户列表

      发表一个新主题  发表一个新投票  回复主题  (订阅本版) 您是本帖的第 8336 个阅读者浏览上一篇主题  刷新本主题   树形显示贴子 浏览下一篇主题
     * 贴子主题: [转载]windows进程中的内存结构 举报  打印  推荐  IE收藏夹 
       本主题类别:     
     longshentailang 帅哥哟,离线,有人找我吗?
      
      
      威望:1
      等级:计算机学士学位
      文章:325
      积分:2990
      门派:XML.ORG.CN
      注册:2006/6/20

    姓名:(无权查看)
    城市:(无权查看)
    院校:(无权查看)
    给longshentailang发送一个短消息 把longshentailang加入好友 查看longshentailang的个人资料 搜索longshentailang在『 操作系统原理 』的所有贴子 引用回复这个贴子 回复这个贴子 查看longshentailang的博客楼主
    发贴心情 [转载]windows进程中的内存结构

    [转载]windows进程中的内存结构

    信息来源:中国源码下载站

    接触过编程的人都知道,高级语言都能通过变量名来访问内存中的数据。那么这些变量在内存中是如何存放的呢?程序又是如何使用这些变量的呢?下面就会对此进行深入的讨论。下文中的C语言代码如没有特别声明,默认都使用VC编译的release版。
    首先,来了解一下 C 语言的变量是如何在内存分部的。C 语言有全局变量(Global)、本地变量(Local),静态变量(Static)、寄存器变量(Regeister)。每种变量都有不同的分配方式。先来看下面这段代码:
    #include <stdio.h>
    int g1=0, g2=0, g3=0;
    int main()
    {
    static int s1=0, s2=0, s3=0;
    int v1=0, v2=0, v3=0;
    //打印出各个变量的内存地址
    printf("0x%08x\n",&v1); //打印各本地变量的内存地址
    printf("0x%08x\n",&v2);
    printf("0x%08x\n\n",&v3);
    printf("0x%08x\n",&g1); //打印各全局变量的内存地址
    printf("0x%08x\n",&g2);
    printf("0x%08x\n\n",&g3);
    printf("0x%08x\n",&s1); //打印各静态变量的内存地址
    printf("0x%08x\n",&s2);
    printf("0x%08x\n\n",&s3);
    return 0;
    }
    编译后的执行结果是:
    0x0012ff78
    0x0012ff7c
    0x0012ff80
    0x004068d0
    0x004068d4
    0x004068d8
    0x004068dc
    0x004068e0
    0x004068e4
    输出的结果就是变量的内存地址。其中v1,v2,v3是本地变量,g1,g2,g3是全局变量,s1,s2,s3是静态变量。你可以看到这些变量在内存是连续分布的,但是本地变量和全局变量分配的内存地址差了十万八千里,而全局变量和静态变量分配的内存是连续的。这是因为本地变量和全局/静态变量是分配在不同类型的内存区域中的结果。对于一个进程的内存空间而言,可以在逻辑上分成3个部份:代码区,静态数据区和动态数据区。动态数据区一般就是“堆栈”。“栈(stack)”和“堆(heap)”是两种不同的动态数据区,栈是一种线性结构,堆是一种链式结构。进程的每个线程都有私有的“栈”,所以每个线程虽然代码一样,但本地变量的数据都是互不干扰。一个堆栈可以通过“基地址”和“栈顶”地址来描述。全局变量和静态变量分配在静态数据区,本地变量分配在动态数据区,即堆栈中。程序通过堆栈的基地址和偏移量来访问本地变量。

    ├———————┤低端内存区域
    │ …… │
    ├———————┤
    │ 动态数据区 │
    ├———————┤
    │ …… │
    ├———————┤
    │ 代码区 │
    ├———————┤
    │ 静态数据区 │
    ├———————┤
    │ …… │
    ├———————┤高端内存区域

    堆栈是一个先进后出的数据结构,栈顶地址总是小于等于栈的基地址。我们可以先了解一下函数调用的过程,以便对堆栈在程序中的作用有更深入的了解。不同的语言有不同的函数调用规定,这些因素有参数的压入规则和堆栈的平衡。windows API的调用规则和ANSI C的函数调用规则是不一样的,前者由被调函数调整堆栈,后者由调用者调整堆栈。两者通过“__stdcall”和“__cdecl”前缀区分。先看下面这段代码:
    #include <stdio.h>
    void __stdcall func(int param1,int param2,int param3)
    {
    int var1=param1;
    int var2=param2;
    int var3=param3;
    printf("0x%08x\n",&para;m1); //打印出各个变量的内存地址
    printf("0x%08x\n",&para;m2);
    printf("0x%08x\n\n",&para;m3);
    printf("0x%08x\n",&var1);
    printf("0x%08x\n",&var2);
    printf("0x%08x\n\n",&var3);
    return;
    }
    int main()
    {
    func(1,2,3);
    return 0;
    }
    编译后的执行结果是:
    0x0012ff78
    0x0012ff7c
    0x0012ff80
    0x0012ff68
    0x0012ff6c
    0x0012ff70

    ├———————┤<—函数执行时的栈顶(ESP)、低端内存区域
    │ …… │
    ├———————┤
    │ var 1 │
    ├———————┤
    │ var 2 │
    ├———————┤
    │ var 3 │
    ├———————┤
    │ RET │
    ├———————┤<—“__cdecl”函数返回后的栈顶(ESP)
    │ parameter 1 │
    ├———————┤
    │ parameter 2 │
    ├———————┤
    │ parameter 3 │
    ├———————┤<—“__stdcall”函数返回后的栈顶(ESP)
    │ …… │
    ├———————┤<—栈底(基地址 EBP)、高端内存区域

    上图就是函数调用过程中堆栈的样子了。首先,三个参数以从又到左的次序压入堆栈,先压“param3”,再压“param2”,最后压入“param1”;然后压入函数的返回地址(RET),接着跳转到函数地址接着执行(这里要补充一点,介绍UNIX下的缓冲溢出原理的文章中都提到在压入RET后,继续压入当前EBP,然后用当前ESP代替EBP。然而,有一篇介绍windows下函数调用的文章中说,在windows下的函数调用也有这一步骤,但根据我的实际调试,并未发现这一步,这还可以从param3和var1之间只有4字节的间隙这点看出来);第三步,将栈顶(ESP)减去一个数,为本地变量分配内存空间,上例中是减去12字节(ESP=ESP-3*4,每个int变量占用4个字节);接着就初始化本地变量的内存空间。由于“__stdcall”调用由被调函数调整堆栈,所以在函数返回前要恢复堆栈,先回收本地变量占用的内存(ESP=ESP+3*4),然后取出返回地址,填入EIP寄存器,回收先前压入参数占用的内存(ESP=ESP+3*4),继续执行调用者的代码。参见下列汇编代码:
    ;--------------func 函数的汇编代码-------------------
    :00401000 83EC0C sub esp, 0000000C //创建本地变量的内存空间
    :00401003 8B442410 mov eax, dword ptr [esp+10]
    :00401007 8B4C2414 mov ecx, dword ptr [esp+14]
    :0040100B 8B542418 mov edx, dword ptr [esp+18]
    :0040100F 89442400 mov dword ptr [esp], eax
    :00401013 8D442410 lea eax, dword ptr [esp+10]
    :00401017 894C2404 mov dword ptr [esp+04], ecx
    ……………………(省略若干代码)
    :00401075 83C43C add esp, 0000003C ;恢复堆栈,回收本地变量的内存空间
    :00401078 C3 ret 000C ;函数返回,恢复参数占用的内存空间
    ;如果是“__cdecl”的话,这里是“ret”,堆栈将由调用者恢复
    ;-------------------函数结束-------------------------

    ;--------------主程序调用func函数的代码--------------
    :00401080 6A03 push 00000003 //压入参数param3
    :00401082 6A02 push 00000002 //压入参数param2
    :00401084 6A01 push 00000001 //压入参数param1
    :00401086 E875FFFFFF call 00401000 //调用func函数
    ;如果是“__cdecl”的话,将在这里恢复堆栈,“add esp, 0000000C”
    聪明的读者看到这里,差不多就明白缓冲溢出的原理了。先来看下面的代码:
    #include <stdio.h>
    #include <string.h>
    void __stdcall func()
    {
    char lpBuff[8]="\0";
    strcat(lpBuff,"AAAAAAAAAAA");
    return;
    }
    int main()
    {
    func();
    return 0;
    }
    编译后执行一下回怎么样?哈,“"0x00414141"指令引用的"0x00000000"内存。该内存不能为"read"。”,“非法操作”喽!"41"就是"A"的16进制的ASCII码了,那明显就是strcat这句出的问题了。"lpBuff"的大小只有8字节,算进结尾的’\0’,那strcat最多只能写入7个"A",但程序实际写入了11个"A"外加1个’\0’。再来看看上面那幅图,多出来的4个字节正好覆盖了RET的所在的内存空间,导致函数返回到一个错误的内存地址,执行了错误的指令。如果能精心构造这个字符串,使它分成三部分,前一部份仅仅是填充的无意义数据以达到溢出的目的,接着是一个覆盖RET的数据,紧接着是一段shellcode,那只要着个RET地址能指向这段shellcode的第一个指令,那函数返回时就能执行shellcode了。但是软件的不同版本和不同的运行环境都可能影响这段shellcode在内存中的位置,那么要构造这个RET是十分困难的。一般都在RET和shellcode之间填充大量的NOP指令,使得exploit有更强的通用性。

    ├———————┤<—低端内存区域
    │ …… │
    ├———————┤<—由exploit填入数据的开始
    │ │
    │ buffer │<—填入无用的数据
    │ │
    ├———————┤
    │ RET │<—指向shellcode,或NOP指令的范围
    ├———————┤
    │ NOP │
    │ …… │<—填入的NOP指令,是RET可指向的范围
    │ NOP │
    ├———————┤
    │ │
    │ shellcode │
    │ │
    ├———————┤<—由exploit填入数据的结束
    │ …… │
    ├———————┤<—高端内存区域


       收藏   分享  
    顶(0)
      




    点击查看用户来源及管理<br>发贴IP:*.*.*.* 2006/10/29 11:11:00
     
     落叶 帅哥哟,离线,有人找我吗?
      
      
      等级:大一(猛啃高等数学)
      文章:28
      积分:147
      门派:XML.ORG.CN
      注册:2006/10/6

    姓名:(无权查看)
    城市:(无权查看)
    院校:(无权查看)
    给落叶发送一个短消息 把落叶加入好友 查看落叶的个人资料 搜索落叶在『 操作系统原理 』的所有贴子 引用回复这个贴子 回复这个贴子 查看落叶的博客2
    发贴心情 
    这么经典,顶一下。

    ----------------------------------------------
    学无止境,请高手们多多指教。

    点击查看用户来源及管理<br>发贴IP:*.*.*.* 2006/11/20 15:54:00
     
     seeyou300 帅哥哟,离线,有人找我吗?
      
      
      等级:大一新生
      文章:3
      积分:69
      门派:XML.ORG.CN
      注册:2006/11/14

    姓名:(无权查看)
    城市:(无权查看)
    院校:(无权查看)
    给seeyou300发送一个短消息 把seeyou300加入好友 查看seeyou300的个人资料 搜索seeyou300在『 操作系统原理 』的所有贴子 引用回复这个贴子 回复这个贴子 查看seeyou300的博客3
    发贴心情 
    点击查看用户来源及管理<br>发贴IP:*.*.*.* 2006/11/23 17:04:00
     
     fengzichen 帅哥哟,离线,有人找我吗?
      
      
      等级:大一新生
      文章:0
      积分:54
      门派:XML.ORG.CN
      注册:2007/1/9

    姓名:(无权查看)
    城市:(无权查看)
    院校:(无权查看)
    给fengzichen发送一个短消息 把fengzichen加入好友 查看fengzichen的个人资料 搜索fengzichen在『 操作系统原理 』的所有贴子 引用回复这个贴子 回复这个贴子 查看fengzichen的博客4
    发贴心情 
    太好了!学到东西了!
    点击查看用户来源及管理<br>发贴IP:*.*.*.* 2007/1/9 21:41:00
     
     GoogleAdSense
      
      
      等级:大一新生
      文章:1
      积分:50
      门派:无门无派
      院校:未填写
      注册:2007-01-01
    给Google AdSense发送一个短消息 把Google AdSense加入好友 查看Google AdSense的个人资料 搜索Google AdSense在『 操作系统原理 』的所有贴子 访问Google AdSense的主页 引用回复这个贴子 回复这个贴子 查看Google AdSense的博客广告
    2025/5/12 14:17:02

    本主题贴数4,分页: [1]

    管理选项修改tag | 锁定 | 解锁 | 提升 | 删除 | 移动 | 固顶 | 总固顶 | 奖励 | 惩罚 | 发布公告
    W3C Contributing Supporter! W 3 C h i n a ( since 2003 ) 旗 下 站 点
    苏ICP备05006046号《全国人大常委会关于维护互联网安全的决定》《计算机信息网络国际联网安全保护管理办法》
    7,562.500ms