以文本方式查看主题

-  中文XML论坛 - 专业的XML技术讨论区  (http://bbs.xml.org.cn/index.asp)
--  『 计算机考研交流 』   (http://bbs.xml.org.cn/list.asp?boardid=67)
----  请问习题17.21可否这样证明?  (http://bbs.xml.org.cn/dispbbs.asp?boardid=67&rootid=&id=39055)


--  作者:ouyangj0
--  发布时间:10/18/2006 6:06:00 PM

--  请问习题17.21可否这样证明?
设H1=<C>,H2=<D>,|C|=r,|d|=s,因为(r,s)=1,c,d可交换,所以:|cd|=rs.
又因为H1H2=H2H1(都是交换群),所以H1H2是G的子群,又存在一个阶为rs的元素,因此:G=H1H2得证。

谢谢!


--  作者:carroty
--  发布时间:10/19/2006 9:59:00 AM

--  
个人认为:你最后应该说明G中每个元素都在H1H2中,因为你前面证的一堆其实就是说明了一个子群关系也就是H1H2<=G.

如果硬说相等似乎有些太生硬了.


--  作者:ouyangj0
--  发布时间:10/19/2006 12:09:00 PM

--  
H1H2是子群,所以|H1H2| | rs=|G|,又有一个rs阶的元素,所以rs=|cd| | |H1H2|,所以,|H1H2|=rs=|G|,说明H1H2是循环群,并且等于G。
--  作者:carroty
--  发布时间:10/19/2006 10:56:00 PM

--  
可能个人习惯问题吧,我觉得书上很多证明相等的时候都是证明>=且<=,证明集合相等的时候也是.其实,你说的意思我懂,只是觉得不太严谨.
--  作者:Logician
--  发布时间:10/20/2006 12:08:00 AM

--  
这个证法很不错!赞!
:)

不过我要说的是,里面用到了很多结论(比如“若H_1H_2=H_2H_1,则H_1H_2是G的子群”,“若a与b可换,则|ab|=|a||b|”,“若H中有rs阶元,则H至少是rs阶的”,“如果A是B的子集,B有限,且|A|=|B|,则A=B”等),在考试时如果要把这些结果一一证一遍就会很费时了。:P


--  作者:ouyangj0
--  发布时间:10/21/2006 6:02:00 PM

--  
对,是这样的.这只是自己在复习的时候让自己温习并运用自己所知的题目而已:)我觉得有时候这样很有效~~
W 3 C h i n a ( since 2003 ) 旗 下 站 点
苏ICP备05006046号《全国人大常委会关于维护互联网安全的决定》《计算机信息网络国际联网安全保护管理办法》
171.875ms